# Modelling HPAI within-farm transmission using viral load distributions, to evaluate biosecurity effectiveness and to support management policies





Sophie Planchand<sup>1</sup>, Timothée Vergne<sup>1</sup>, Sébastien Lambert<sup>1</sup> <sup>1</sup>UMR IHAP, ENVT INRAE, Université de Toulouse, Toulouse, France

### Background

- Managing a HPAI epidemics = race against time: high and rapid lethality (up to 90-100%, often within 48 hours)
- HPAI models: based on daily mortality, which is often a missing value
- Biosecurity: a method of choice to slow down viral spread, but effectiveness of within-farm measures (e.g., compartmentalization) is underdocumented

## Research questions



- How to develop a HPAI model, estimating the day of introduction of the virus and its within-farm dynamics, using an **innovative** approach: cross-sectional viral load distribution<sup>1</sup>?
- 2. Is within-houses compartmentalization efficient to limit viral spread?





#### **Expected impacts**

✓ Identifying risk factors, and directing epidemiologic investigations



Supporting management policies

✓ Estimation of the within-houses

compartmentalization effectiveness

### **Perspectives**

Using this method to test the effectiveness of different surveillance methods, in a context of avian influenza vaccination

